General Atomics - Aeronautical Systems Inc.

General Atomics Aeronautical Systems, Inc.

Aircraft Systems Group

- Designs, develops, produces, and supports unmanned aircraft systems
 - Aircraft
 - Ground Control Stations
 - Support equipment
 - Logistics and personnel support
 - Integration of all sensors

Reconnaissance Systems Group

- Designs, develops, produces, and supports sensor systems for unmanned and manned aircraft
 - Lynx SAR
 - CLAW sensor control
 - Integration of sensors in manned aircraft

General Atomics Aeronautical Systems, Inc.

Manufacturing Facility – Rancho Bernardo San Diego, California

Stores/Parts Facility – Thornmint San Diego, California

Building #3 – Rancho Bernardo San Diego, California

Manufacturing Facility – Rancho Bernardo San Diego, California

Composite Manufacturing Facility – Sabre Springs San Diego, California

Reconnaissance Group Facility – Sabre Springs San Diego, California

Flight Operations and Training Facility El Mirage, California

Flight Operations and Training Facility
Gray Butte – Palmdale, California

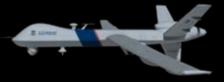
Research and Development Facility

Adelanto, California

Family of Aircraft - Persistent Awareness: Land & Sea

Customer Base

Predator, Predator B (Reaper)



I-GNAT ER, Sky Warrior A & 0 Sky Warrior (ER/MP)

Predator B

GNAT-750, Predator, Predator B

Altus, Altair, Predator B

GNAT-750, I-GNAT, Predator B

Predator B (Reaper)

Predator

GNAT-750, I-GNAT

Predator

Army I-GNAT-ER / Sky Warrior Alpha

- 17 produced
- 13 are in combat
- Two aircraft have exceeded 10,000 total flight hours

Sky Warrior - Block 0 (Deployed March 2008)

Wingspan:	56 ft	Max air speed:	135+ KTAS
Length:	28 ft	Max gross takeoff weight:	3,200 lb
Max altitude:	29,000 ft	Payload capacity:	575 lb internal 500 lb external
Max endurance:	30+ hr	Payloads:	EO/IR camera systemSAR4 Hellfire missilesCommunications relay

ER/MP Sky Warrior Block 1 Features

- Heavy fuel engine
- Triple redundant avionics & flight controls
- Dual redundant flight control surfaces

- available)
- Auto takeoff & land (dual systems)
- TCDL LOS communications
- TCDL air data relay communications
- De-icing
- One system GCS

Predator B/MQ-9 Reaper

Predator, Warrior, and Predator B Comparison

	Predator	Sky Warrior	Predator B
GTOW	2,300 lb	3,200 lb growth to 3,600	10,500 lb
Power	105 HP	135 HP	900 HP
Maximum Altitude	25,000 ft	29,000 ft	50,000+ ft
Maximum Speed	120 KTAS	135 KTAS	240 KTAS
Fuel	600 lb	580 lb	4,000 lb
Payload Nose	450 lb	575 lb	850 lb
Payload Wing	250 lb	500 lb	3,000 lb
Endurance	40 hr	31 hr	30+ hr

Current Operations - Warfighting

- Multiple orbits/CAPs per day supporting Southwest Asia operations
- USAF Predators are each flying 20-23 hour missions per day
- USA I-GNAT ER/Warrior Alpha each flying 17-20 hour missions per day
- Predators logging over 17,000 hours/month

Current Operations - Maritime

Current Operations – Research / Civil Application

Flight Summary

- CY-06 GA-ASI aircraft flew
 - 80,000 hours
 - 4,500 combat missions
- CY-07
 - 130,000 hours (50% growth)
 - 10,000 combat missions

Predator aircraft have logged over 450,000 flight hours

> 360,000 combat flight hours

Flight Summary

Every second of every day, 20 Predator series aircraft are airborne worldwide

Airworthiness

- Demonstrated Airworthiness via FAA UAS Experimental Certification Standards – FAA Order 8130.34
 - Altair
 - Sky Warrior
 - Predator B
- Demonstrated Airworthiness via DoD MIL-HDBK-516 (USN/USA/USAF)
 - I-GNAT/ER
 - Predator
 - Predator B
 - Sky Warrior

Airworthiness - Predator B

Received FAA Airworthiness

Certification – April '08

Received FAA COA – Feb '06

Agenda – Predator B FAA Safety Brief

Program Overview System Design

- Airframe
- Structures
- Propulsion
- Datalinks
- Electrical Power
- Avionics
- Flight Controls
- Performance
- Software Approach
- Ground Control Station
- Payloads

Safety

- System Safety Assessment
- Containment

Operations and Training

- Flight Operations
- Flight Crew Training
- Maintenance, Inspection, Training

GENERAL ATOMICS

Airworthiness – Predator B

Redundant Control Module (RCM)

Processing center of flight control system

Triple redundant flight computer architecture

Universal Asynchronous RS-422 Bus (UARB)

Dual redundant communication network for all flight critical nodes

"Smart" Servo Actuators

Microcontroller based design with dual UARB interface

Redundant Flight Surfaces

4 flaps, 4 ailerons, 4 ruddervators, 1 rudder

Honeywell Digital Electronic Engine Control (DEEC)

Engine sensor feedback (DEEC mode only)
ARINC 429 interface

Engine & Fuel Interface Unit (EFIU)

Engine sensor feedback (DEEC and b/u mode)

Dual UARB interface

Honeywell TPE331-10YGD-514GA turboprop engine

Engine family has a long history of use in aviation applications

TPE331 engines have over 100 million hours of service

Triplex Embedded GPS/INS (EGI) Units

Honeywell H-764 with embedded Trimble Force 5 GPS receiver

Redundant data interfaces to flight computers in RCM Each EGI connected to dedicated GPS antenna

Triplex Air Data Sensor Sets

3 heated pitots, 6 heated static ports

6 Precision Pressure Transducers (PPT)

Alpha/Beta/OAT Probe

Alpha/Beta: vanes connected to potentiometers

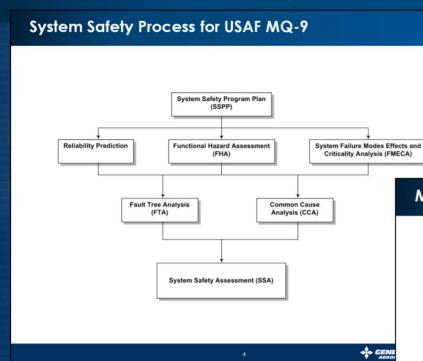
OAT: Solid state sensor

Nose Cameras with Heated Lenses

1 daylight camera, 1 long wavelength IR camera

Ice Detector

Magnetostrictive probe type from Goodrich


Architecture

- 3 Flight Computer Assemblies (FCA)
- 2 vote processing circuits on Vote Processor Assembly
- 2 LOS Datalink Processor Assemblies

1 Interface Processor Assembly (IPA)

Airworthiness Safety Case – Predator B

Conducted by GA-ASI

MQ-9 System Safety Tasks

- System Safety Program Plan (SSPP)
 - Outline process to be used for System Safety Program
 - Defines safety requirements
- System Reliability Prediction Model
 - Contains Predator B Aircraft and GCS Line Replaceable Units (LRUs)
- Functional Hazard Assessment (FHA)
 - Preliminary List of Hazards identified
 - Catastrophic and Critical cases from ICC
 - Includes Marginal and Negligible cases
- Fault Tree Analysis (FTA)
 - Preliminary fault tree for top events completed
 - Updating and expanding on FTAs for MQ-9 SDD design
- Failure Modes Effects and Criticality Analysis (FMECA)
 - Broken down to sub-system level
 - Identifies failures and effects within sub-system
 - Analysis at the card level is the next step for SDD

Item no.	ASI Number	Document Title
1	ASI-00947	System Safety Program Plan
2	Not Assigned	System Functional Description
3	ASI-01134	Functional Hazard Assessment
4	ASI-01192	Fault Tree Analysis
5	ASI-01132	System Safety Assessment Summa
6	Not Assigned	FMECA Work Book for MQ-9 UA Interim Combat Capability (ICC)

System

Airworthiness – Sky Warrior

Received FAA Airworthiness **Certification – May '07**


Agenda

- Test Overview
 - Test Objectives
 - Test Status
 - Flight Test Planning
 - Crew Qualifications/Manuals
 - Range Requirements
 - Stopliaht Chart
- Sub-system Test Results
 - Testing Accomplished
 - Test Results
 - Open Issues
 - System Hardware
 - Software
 - FMECA Results
- Risk Assessment
- Discussions

Received FAA **COA - Jan '08**

- AQS test reports delivered →
- Structures test reports posted to ShareIT

U.S. ARMY ER/MP SDD Warrior Block 1 Flight and Ground Loads Report Warrior Airworthiness Compliance Engine Performance Warrior Airworthiness Compliance - FAA Engine Certification Warrior Airworthiness Compliance Engine Oil Tank ASI-01536 Warrior Airworthiness Compliance - Engine Oil Filter Warrior Airworthiness Compliance Engine Oil Pump Warrior Airworthiness Compliance Gearbox Oil Tank Warrior Airworthiness Compliance Gearbox Oil Lines and Fittings ASI-01546 Warrior Airworthiness Compliance - Gearbox Oil Filter ASI-01550 Warrior Airworthiness Compliance - Gearbox Oil Pump ASI-01553 Warrior Airworthiness Compliance - Coolant Tank Test Warrior Airworthiness Compliance - Coolant Pump ASI-01559 ASI-01565

Warrior Airworthiness Compliance - Air Induction System Warrior Airworthiness Compliance - Engine Mount Attachment and Structure Warrior Airworthiness Compliance - Engine Mount Warrior Airworthiness Compliance - Powerplant Limitat ASI-01566 Warrior Airworthiness Compliance - Maintainability- Design

ASI-01575 Warrior Arworthiness Compliance - Propulsion Environment
Warrior Arworthiness Compliance - Propulsion Manufacturing Requirements Warrior Airworthiness Compliance - Propulsion Software Design Procedures Warrior Airworthiness Compliance - Propeller Performance Warrior Airworthiness Compliance - Propeller System Warrior Airworthiness Compliance - Propeller Environment Warrior Airworthiness Compliance - Pitch Limit - Controls

Warrior Airworthiness Compliance - Propeller Durability
Warrior Airworthiness Compliance Fuel System Performance Warrior Airworthiness Compliance - Fuel Tanks Warrior UAV System Warrior Airworthiness Compliance - Fuel Injectors Warrior Arworthiness Compliance - Fuel Pressure Control Valve Warrior Arworthiness Compliance - Fuel System Lines and Fittings Warrior Airworthiness Compliance - Fuel System Drains Warrior Airworthiness Compliance - Fuel System Sensors Warrior Airworthiness Compliance - Alternator Performance

ASI-01605 Warrior Airworthiness Compliance - Alternator Warrior Airworthiness Compliance - Propulsion Power Cable ER/MP Block 1 Actual Weight Report

Airworthiness – Sky Warrior

Design Features & Redundancy

FADEC Redundant Engine Control Units (ECUs) with redundant sensor inputs

Dual Fuel Tanks with Automatic Switching

Dual Redundant Fuel Pumps

Engine MTBIFSD of 35,000 Flight Hours

Glide-back for safe recovery

Design Features & Redundancy

Dual Redundant Electrical System (w/dual alternators, ARMs, and backup batteries)

Dual Redundant 28VDC Power Busses

Dual Network Junction Boards

Dual Payload Power Distribution Modules

Design Features & Redundancy

Triple Redundant Flight Computers

Dual Aileron servos per wing (inboard & outboard)

Triple Redundant INS/GPS and triple air data sensors

Dual 1553 Buses and backup RS-422 bus

Dual Redundant Electrical System (w/dual alternators, ARMs, backup batteries, and dual bus)

Dedicated smart servos for each control surface

Redundant PSO Workstations

Design Philosophy / Operational Impact

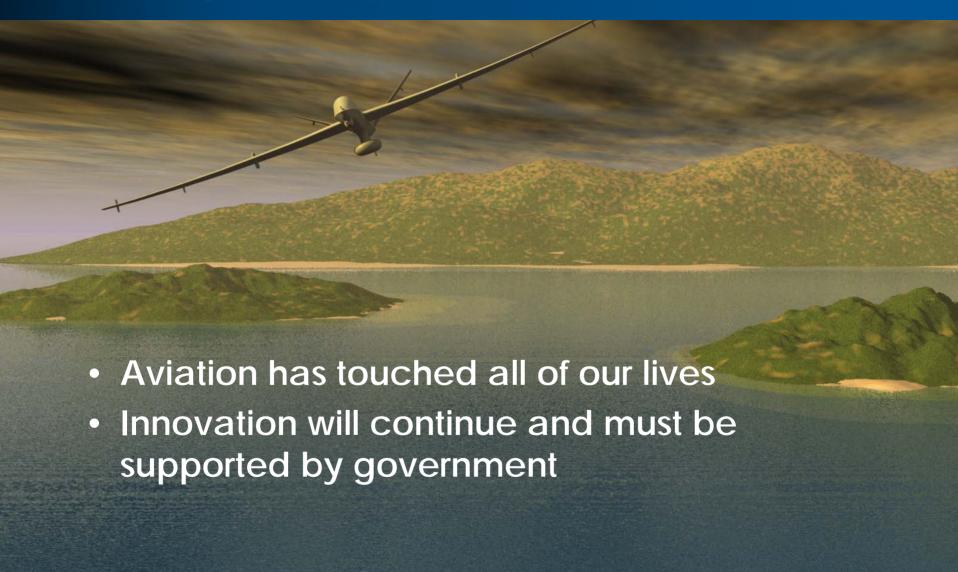
- Evolved into:
 - Redundant avionics
 - Certificated powerplants
 - Redundant flight controls
- Instrument rated Pilots in comms with ATC
- Aircraft capable of IFR flight and IFR flight plans
- Resulting in:
 - Operations over 5 continents, 5 oceans, many seas
 - Operations sequenced with manned commercial, general aviation, and military aircraft at international airports

Perspective

The good news

- We have developed advanced, proven, airworthy unmanned aircraft systems with robust and redundant avionics and flight control systems
- We are delivering advanced 'capabilities' to the Warfighter. These unmanned aircraft systems are dramatically improving the efficiencies of air power
- We are providing a significant and positive effect in the fight against terror; home and abroad

Instrument rated pilots always in control


Perspective

The bad news

- Continued development and delivery of these systems are being impacted by current regulatory constraints
 - Reduction of available Experimental Certifications
- Current operating limitations are inhibiting operator training in national air space
 - Prohibition against night operations
- NAS integration timeline measured in decades
 - Joint DoD FAA effort a step in the right direction
 - Technical and Regulatory challenges
- This is all being tolerated in the middle of a very serious war on terror

Final Thoughts

